Skip to main content

pa | ru

Women and CS History

Women and CS History

The significant contributions by women to the developemnt of the computer and CS continue to be overlooked. Most recently in this article by @cdixon for @TheAtlantic: How Aristotle created the computer.

It is important to bring to light the contributions by women and remind people of the work of Denis Gürer and others. 

pa | ru

The Psychology of Computer Programming, by Gerald Weinberg

On my reading list: The Psychology of Computer Programming, a book by Gerald Weinberg. Why? I saw this quote on compassionatecoding.com and really liked it:

 

"Computer programming is a human activity…and yet…many people—many programmers—have never considered programming in this light." 

 

—Gerald Weinberg, The Psychology of Computer Programming, 1971

pa | ru

pa | ru

What to watch....
http://bechdeltest.com/

pa | ru

Why I am pursuing my research trying to understand the lived experience of women in CS.

2 min read

To push back against the gender and other sociocultural stereotypes and misconceptions in the field and support the participation of more women and underrepresented groups in the field. In their article titled Gender digital divide and challenges in undergraduate computer science programs, Stoilescu and Egodawatte (2011) illustrate the issue:

When asked how gender inequity could be addressed, Mike, a third-year student participant, argued, “That is the difference between the female brain and male brain. I don’t think any motivation can help.” Ravi, another third-year male student participant, argued, “women might actually have been helped more than might generally seem to be the case.” He sustained an offensive and discriminatory posture by suggesting that “women aren’t that good at working hard. They should be encouraged to sit quietly more, maybe that helps.” (Stoilescu and Egodawatte, 2011).

In my dissertation, I write:

As technology tools become integral to our daily lives it is essential that both women and men learn to program the tools that contribute to the sociocultural environments within which we are now participating. These tools, after all, are transforming the way we learn, work, and live (National Science Foundation, 2014). All people need to be able to use the tools available to them in robust ways. More importantly, they must be able to program the tools that are available to them and in programming them, contribute additional affordances to those tools. As Phillips (2014) describes, people with different backgrounds bring new information and interacting with socially diverse groups leads to more innovation than working in homogenous groups. Subsequently, people are unique and individuals of different genders, ethnicities, and backgrounds have different needs; tools made by only one person or group will not necessarily be as applicable or useful to individuals in other groups. We need to ensure that there is good representation of differences in the developers of our tools.

pa | ru

"when we hear dissent from someone who is different from us, it provokes more thought than when it comes from someone who looks like us" Katherine Phillips

Phillips, K. W. (2014). HOW DIVERSITY WORKS. Scientific American, 311(4), 43-47.

pa | ru

pa | ru

pa | ru

pa | ru

Advancing STEM Learning for All 2016 Video Showcase

4 min read

NSF recently hosted the Advancing STEM Learning for All 2016 Video Showcase. 156 videos were included in the showcase and all of them share the innovative work that is being done in the STEM fields. Videos can be filtered by several categories, as a K12 educator, I found the Age/Grade level filter especially helpful as I tried to find projects related to the work that I do in 9 - 12 education. One topic that blew my mind was the work being done around embodied design. Embodied learning designs set up the conditions for learners to engage their body in learning activities through interactive learning environments and whole-body interactive simulations (Lindgren, Tscholl, Wang, & Johnson, 2016). In a recent study of middle school students, Lindgren, and colleagues (2016) found that enacting physics concepts and experiencing these critical ideas in an immersive, whole-body interactive simulation led to significant learning gains, higher levels of engagement, and more positive attitudes towards science when compared to viewing a desktop version of the same simulation. One of the researchers behind this study, Robb Lindgren, submitted this video to the showcase: Gesture Augmented Simulations for Supporting Explanations. Other examples of embodied learning include a video about Advancing New Science Learning and Inquiry Experiences via Custom-Designed Wearable On-Body Sensing and Visualization and this one about VEnvI: Learning Computational Thinking Through Creative Movement.

Wanting to learn more, I went to circlcenter.org where I found the DIP: Developing Crosscutting Concepts in STEM with Simulation and Embodied Learning project and the Promoting Learning through Annotation of Embodiment (PLAE) project. I also found more information on  VEnvI: Exploring Grounded Embodied Pedagogy in Support of Computational Thinking.  As a teacher, I appreciate projects with content and ideas that are immediately applicable in the classroom. For example, the VEnvI software is available for download and use in classrooms; the team is currently seeking funding for wider dissemination to teachers and students. Their software allows students to program a virtual character to move in realistic ways. In the showcase video, the VEnvI team shows clips of the dance routines that they have developed to help students learn programming concepts. Students first learn a dance routine and then move to computers where they program their avatar to do the same routine they just learned. You can see students repeating the routines as they write their program, engaging their bodies in the learning activity. I haven’t found the dance routines available to teachers online, but I can clearly see the value of movement to teach basic CS concepts. As a teacher who might benefit from this team’s work, I hope the team gets more funding for the implementation stage of this project. Thinking about other practitioners who might also benefit from the work that has already been done by this team makes me wonder about how the team might disseminate this project to a broader audience. Modifying the VEnvI website to provide a space for teachers to develop and share content for the tool might be one way to do this. Like other projects that are still in the development or concept stages, this project will be very interesting to follow.

I encourage other teachers and practitioners to take a look at the Advancing STEM Learning for All 2016 Video Showcase and tell me what you learn. Comments and videos are accessible on the site for this year, so go check them out. While you can no longer comment, there, you can leave comments here and we’ll get them to the researchers. Please look for next year’s showcase where you, too can provide feedback to researchers!

 

Reference

Lindgren, R., Tscholl, M., Wang, S., & Johnson, E. (2016). Enhancing learning and engagement through embodied interaction within a mixed reality simulation.Computers & Education, 95, 174-187.